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1 Introduction

There are few asset pricing models that can be solved explicitly.1 These limited models are used

widely to understand applied problems in asset pricing. For example Lo, Mamayshy, Wang (2004)

recently use a continuous time model with CARA utility to explain how trading cost influence asset

prices and trading volume, while Easley and O’Hara (2004) use CARA utility in discrete time to

discuss the role of information in the cost of capital. In this paper we derive an exact solution to

a new asset pricing model in discrete time which generalizes Abel’s (1990) habit persistence model.

Moreover, we show that our price-dividend function is increasing and analytic for all situations

that are of interest to financial economists; i.e., when consumption growth is low enough for the

marginal utility of future cash flows to be positive, which includes all historic levels. Using the

explicit solution of the asset pricing model, we develop a closed form formula for the distribution of

returns. We characterize our closed form solution to the hybrid habit model using Mehra-Prescott’s

(1985) statistics for dividend growth. With an internal habit weight of 50% and a coefficient of risk

aversion of 3.25, simulation results match the historic U.S. equity premium and risk free interest

rate. In addition, the distribution of stock returns generated by our hybrid habit model has kurtosis

which is closest to the historic monthly returns distribution. Thus, we provide a closed form solution

to an asset pricing model which delivers realistic returns on stock and bonds.

Our model is based on Abel’s (1990) asset pricing model, which was designed to explain the

equity premium identified by Mehra and Prescott (1985).2 In Abel’s model, an investor’s current

investment-consumption decision depends on one of two habits: one based on the investor’s con-

sumption in the last period (internal habit) and the other based on the consumption of his neighbor

in the last period (external habit).3 The investor values a growing stream of future dividends, which

provide his future consumption. In numerical simulations for a specific example, Abel matched the
1For example Brock (1979, 1982) solves for asset prices in a production economy with 100% depreciation and

logarithmic preferences in discrete time. While Burnside (1998) is able to solve a similar model with constant relative
risk aversion (CRRA). Merton (1990) and Wang (1994) solve an asset pricing model in continuous time with constant
absolute utility (CARA).

2See Constantinides (2002), and Mehra and Prescott (2003) for a recent survey of this literature.
3See Constantinides (2002), and Chen and Ludvigson (2004) for recent surveys of asset pricing models based on

internal or external habits. While Abel (1999) provides a closed form solution for an asset pricing model with leverage,
he does not consider internal habits.
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historical equity premium with a purely internal habit model. To achieve this result, he used the

following in his example: the Mehra-Prescott (1985) statistics for consumption growth, a two-state

Markov distribution for consumption (dividend) growth, and a relative risk aversion close to one.4

We generalize Abel’s asset pricing model in two ways: first, consumption (dividend) growth is

assumed to be an AR(1) process subject to Gaussian random shocks, and second, the investor’s

preferences are allowed to be a convex combination of internal and external habits.5 Internal and

external habits have different effects on an investor’s consumption decision, and hence on the returns

distribution. When valuing future payoffs from stocks, internal habit requires the investor to compare

the variation in per period marginal utility across time periods, whereas external habit requires the

investor to consider the level of per period marginal utility. The comparison of variance associated

with internal habit magnifies the impact of random fluctuations in consumption (dividend) growth.

This magnification has such a large impact that with 100% internal habit, it is feasible for the

variation in marginal utility of the future payoff to generate infinite volatility in stock prices.6 Our

hybrid internal-external habit model produces intermediate levels of variation in stock prices. Using

the Mehra and Prescott’s statistics and a habit combination with 50% internal habit and a coefficient

of relative risk aversion of 3.25, our hybrid internal-external habit model generates sufficient variation

in marginal utility to match estimates of both the historical equity premium and risk free interest

rate.

The closed form solution for our asset pricing model is characterized by a price-dividend ratio that

is monotonic in consumption (dividend) growth when the marginal utility is positive.7 The price-

dividend function is also analytic in a neighborhood of consumption growth in which the marginal

utility is always positive. Analyticity means that the price-dividend function can be represented
4He is limited to a two point distribution because he could not allow consumption growth to exceed an upper limit,

thus ensuring positive marginal utility of consumption.
5 Chen and Ludvigson (2004) compare a purely internal habit model and a purely external habit model, and find

evidence that supports only the internal habit model. Korniotis (2004) allows for combinations of internal and external
habits, and finds evidence that both are relevant.

6This explains why Abel had to limit his distribution of consumption growth and the coefficient of risk aversion in
his numerical simulation. Adding the Gaussian distribution for dividend growth introduces the small chance that the
variation in per period marginal utility is negative for annual dividend growth larger than 29% which is larger than
eight standard deviations of dividend growth. We prove below that this results in an error less than 40 cents on a
million dollar purchase of this stock as long as annual dividend growth is within the range [−29%, 29%].

7Recall that the price-dividend ratio in Abel’s model is dependent on consumption growth.
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by a Taylor series in a neighborhood of every point within the interval of convergence for the

price-dividend function.8 CCCH show that under these circumstances, the price-dividend ratio is

analytic for the special cases of Mehra-Prescott and external habit.9 In these two cases, CCCH

also demonstrate that the price-dividend function is analytic with a radius of convergence of infinity.

With the explicit solution developed in this paper, we are able to confirm that the Taylor series of the

price-dividend function, evaluated at the historic average rate of consumption growth, is identical

to the explicit solution in the two cases analyzed by CCCH. In addition, we know that our explicit

solution for the internal habit case applies when the marginal utility of consumption is positive.

Therefore, we find that the explicit solution to our asset pricing model is an analytic function for all

circumstances in which financial economists are interested.

Using the explicit solution to our hybrid asset pricing model, we construct an explicit formula

for the distribution of stock returns, which is conditional on the growth of consumption (dividends).

Our theoretical distribution of stock returns yields an equity premium of 4.2%, which matches the

historic average of the annual U. S. stock returns from 1871−2002. In addition, the expected return

on a one period bond is 2.8% which also matches the historic value. Thus, the risk free rate puzzle

identified by Weil (1989) in previous models, is resolved in our model. Our theoretical distribution

is representative of the behavior of monthly stock returns: the kurtosis is significantly higher than

its annual historical value; it is lower than the daily historical value; but it is closest to the kurtosis

found in monthly U.S. stock return data from 1802 to 2003. The main drawback of our hybrid asset

pricing model is that the standard deviation of bond returns is about four times too big. We suspect

that the precautionary savings effect developed in Campbell and Cochrane (1999) and Cecchetti,

Lam and Mark (2000) would remedy this problem. Thus, we provide a new closed form formula for

the price-dividend ratio and stock returns which delivers reasonable moments for the distribution of

stock returns.

For related results we refer the interested reader to the works of Abel (1990, 1999), Bansal
8Burnside (1998) also finds the explicit solution for the Mehra-Prescott case with Gaussian shocks. Also see

Campbell (1986), Labadie (1989), Burnside (1998), Birdarkota and McCulloch (2003), and Tsionas (2003) for various
versions of the Mehra-Prescott case. Gali (1994), Abel (1999), and Chan and Kogan (2002) examine the external habit
case.

9Throughout this paper we use CCCH in referring to Calin, Chen, Cosimano, and Himonas (2004).
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and Yaron (2004), Burnside (1998), Campbell and Cochrane (1999), Cecchetti, Lam and Mark

(2000), Chan and Kogan (2002), Chen and Ludvigson (2004), Collard, Feve, and Ghattassi (2006),

Constantinides (2002), Gali (1994), and Mehra and Prescott (2003).

In the next section we summarize our hybrid internal-external habit asset pricing model and

write the Euler equation as an integral equation in a form that is easier to solve. In section 3 we

state our main results concerning the integral equation for the hybrid asset pricing model. In section

4 we construct a sequence of functions which uniformly converges to a continuous solution for our

asset pricing model. In section 5 we recognize a bound on our candidate solution so that we seek a

solution in an appropriate vector space and use a weighted Lp space to prove uniqueness. In section

6 we examine the properties of our exact solution. In particular, we find an explicit formula for

the distribution of stock returns and the equity premium. In section 7 the explicit price-dividend

function and distribution of stock returns are used to determine whether our model matches the

empirical distribution of stock returns using the statistics for dividend growth from Mehra and

Prescott (1985). Our conclusions are summarized in the final section.

2 The Asset Pricing Model

In Abel’s (1990) asset pricing model, the lifetime utility of the representative investor is given by

Ut ≡
∞∑
j=0

βj
[ct+j/vt+j ]

1−γ

1− γ
, (2.1)

where vt =
[
cρt−1C

1−ρ
t−1

]α
captures both internal and external habits. The variable ct−1 is the con-

sumer’s own consumption in period t − 1, and Ct−1 is the average per capita consumption for the

economy in period t − 1. The former represents internal habit, while the later captures external

habit. The relative risk aversion γ, the weight on the investor’s combined habits α, the discount

factor β, and the weight on the individual’s internal habit ρ are all restricted to being greater than

or equal to zero. When α = 0, equation (1) is the Mehra-Prescott (1985) model, in which utility

does not depend on habit. When α = 1 and ρ = 0, the investor’s consumption decision depends only

on lagged aggregate consumption (external habit). Abel calls this the relative consumption case of
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“catching up with the Joneses.” When α = 1 and ρ = 1, the investor’s consumption depends only

on his internal habit.

We generalize Abel’s (1990) model by allowing α and ρ to vary between 0 and 1, thus creating

intermediate combinations of internal and external habits. Our second generalization of Abel’s (1990)

model is to allow dividend growth to follow an AR(1) process with Gaussian shocks.10 Since the

only source of income is the dividend from the risky security, we have ct = Ct = Dt in equilibrium.

The dividend process for the risky security is

Dt+1 = Dte
x0+φxt+νt+1 , (2.2)

where x is the continuously compounded dividend growth rate, which follows an AR(1) process

subject to a normally distributed random shock, ν, which has a zero mean and variance σ2.

CCCH demonstrate that the Euler equation for equity prices satisfies the integral equation

P (x) =
1√
2πσ

K0e
K1x

1−K2eK1x

∫ ∞
−∞

e−
1

2σ2 [ν−σ2(1−γ)]2
[
1−K2e

K1(x0+φx+ν)
]

[1 + P (x0 + φx+ ν)] dν .

(2.3)

We define K0 = βex0(1−γ)+σ2

2
(γ−1)2

, K1 = (1 − γ)(φ − α), and K2 = αρK0 to make the equa-

tion more transparent. The marginal utility for any time period under equilibrium is given by[
1−K2e

K1x
]
cα(γ−1)−γ . As a result, we refer to 1 −K2e

K1x
(
1−K2e

K1(x0+φx+ν)
)

as the investor’s

valuation (marginal utility) of the expected dividend in the current (next) period . While K0e
K1x

represents the investor’s discounted (marginal) value of expected dividend growth. In both the

Mehra-Prescott (1985) case and the internal habit case, K2 = 0. Therefore, these factors for the

variation in the current period and in the next period are both equal to 1. In this case, the investor

compares only the level of expected marginal utility for this period and the next period to make the

optimal investment (consumption) decision. The functional equations for the Mehra and Prescott

case and the external habit case differ only by the value of the constant K1. When the investor is

influenced by internal habit, K2 is positive, and the investor considers the expected variation in per

period marginal utility in this period relative to its value in the next period.
10Both of these modifications were suggested in Abel’s (1990) conclusion.
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The marginal utility can be negative when the dividend growth rate is sufficiently high, however

this is highly unlikely and does not materially effect our closed form solution. In fact, marginal

utility is negative for dividend growth larger than − ln(K2)
K1

.11 As a result, the Gaussian distribution

yields a negative marginal utility for sufficiently high dividend growth.12 This opens the possibility

that the price-dividend ratio could be negative for sufficiently high dividend growth. However, for

the parameters, that result in the historic average equity premium and risk free interest rate, the

dividend growth must be greater than 0.29 for this to occur, which is more than eight standard

deviations of dividend growth above its historic average, 0.017. However, the integral equation (2.3)

considers all possible levels of dividend growth so that the price-dividend ratio in negative marginal

utility states may have a significant effect on the price-dividend ratio in positive marginal utility

states. We prove this error does not exceed 40 cents for a purchase of one million dollars of equity

for dividend growth within the range of 0.017± 8σ. Thus, the benefit of a closed form solution with

realistic equity premium and risk free interest rate significantly outweighs the minute chance that

the marginal utility is negative.

The derivation of a closed-form solution for the price-dividend function is aided by defining two

functions:

Q(x) =
1−K2e

K1x

eK1x
P (x) (2.4)

and

M(x) =
1√
2πσ

∫ ∞
−∞

e−
1

2σ2 [ν−ψ(x)]2 (1−K2e
K1ν
)
dν = 1−K2e

K1ψ(x)+ 1
2
σ2K2

1 , (2.5)

where ψ(x) = φx+x0 +σ2(1−γ). Q(x) represents the investor’s marginal evaluation of the expected

price-dividend ratio since eK1x is the investor’s expected dividends and 1 − K2e
K1x captures the

marginal utility of investment in the equity.13 The expression M(x) is the expected variation in

next period’s dividend.
11Abel avoided this issue, by considering only low levels of γ and a two point distribution.
12Samuelson (1970) first recognized the issue associated with assumed distributions for applied work and theoretical

models in a static portfolio problem. See also Jin and Judd (2002) for a discussion of this issue when using the
perturbation method.

13Strictly speaking recall that the average dividend growth rate, x0, is included in the constant, K0.
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Using these functions, the integral equation (2.3) can be simplified to

Q(x) = K0M(x) +K0
eK1ψ(x)+ 1

2
σ2K2

1

√
2πσ

∫ ∞
−∞

e−
1

2σ2 {ν−[ψ(x)+σ2K1]}2Q(ν) dν . (2.6)

As shown in CCCH, the benefit of this simplification is that Q, may be analyzed independently of

the investor’s expected marginal utility, 1−K2e
K1x. Once we know the solution for Q, we can use

(2.4) to demonstrate that the price-dividend ratio is well behaved when 1−K2e
K1x > 0. Thus, we

can examine all the circumstances in which Abel’s asset pricing model is well defined.

3 Solving the Asset Pricing Model

In this section we solve the integral equation (2.6) in the space CL∞(R, e|y|) which is defined as

follows.

Definition 1. CL∞(R, e|y|) is the real vector space consisting of all the continuous functions f such

that there are real numbers Mf ≥ 0 and kf with |f(y)| ≤Mfe
kf |y| for all y ∈ R.

The main results of our work are summarized in the following theorem.

Theorem 3.1. If |φ| < 1 and K4 = K0e
K2

1σ
2−2K1(φ−1)[x0+σ2(1−γ)]

2(φ−1)2 < 1, then:

(a) the integral equation (2.6) has a solution given by

Q(x) = K2 +
∞∑
n=0

[
(K0 −K2) (K0)n e

φn−1
φ−1

K1ψ(x)+n
2
σ2K2

1+An+nB
]
, (3.7)

where

An =
K2

1σ
2φ2

2(φ− 1)2(φ2 − 1)
(φ2n − 1) +

K1(φ− 1)[x0 + σ2(1− γ)]−K2
1σ

2φ

(φ− 1)3
(φn − 1) (3.8)

and

B =
−K2

1σ
2φ2 + 2K2

1σ
2φ− 2K1(φ− 1)[x0 + σ2(1− γ)]

2(φ− 1)2
; (3.9)

(b) the solution (3.7) is unique in the real vector space CL∞(R, e|y|) ;

(c) the solution P to equation (2.3) has the following properties:
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(i) if 0 < K2 6 K4, then P is positive and increasing in the interval (−∞,− lnK2
K1

) ;

(ii) if K2 = 0, then P is positive and increasing in (−∞,∞) ;

(iii) if K2e
K1x < 1, then P is analytic in (−∞,− lnK2

K1
) .

Theorem 3.1 allows us to express the closed form solution to our asset pricing model by sub-

stituting the unique solution for Q in (3.7) into the equation for Q in (2.4), and solving for the

price-dividend ratio P . While the expression for the price-dividend function is different from Burn-

side’s Equation (17), it converges to the same solution in the case of no habit persistence (α = 0).

The partial sum in (7) is within seven dollars out of a billion of Burnsides equation (17) when

n = 2000. The advantage of our solution is that we can examine the properties of the price-dividend

function when the representative investor is characterized by different combinations of internal and

external habits (α 6= 0 and ρ 6= 0).14

The closed form solution for the price-dividend function allows us to investigate the properties of

the price-dividend ratio, the return on stocks and bonds, and the equity premium. We show that the

price-dividend function has two characteristics: it is (c-i) monotonic, (c-ii) infinitely differentiable,

and (c-iii) analytic. CCCH demonstrate property (c-iii) for the Mehra-Prescott and external habit

cases, without having found the exact solution. In our more general hybrid model, we find that

the price-dividend ratio is positive and increasing in the domain in which the marginal utility of

consumption is positive (c-i) and it is infinitely differentiable in the same domain (c-ii). This domain

is also the one in which the function is analytic (c-iii). Analyticity of the price-dividend function

means that we may write the price-dividend function as a Taylor series in a neighborhood of a point.15

We show that the interval of convergence for our hybrid asset pricing model contains all historical

levels of dividend growth that occurred from 1890 to 2002. Thus, the closed form solution for the

price-dividend ratio for our hybrid asset pricing model exists, is unique, and satisfies properties (c-i)

through (c-iii) for any circumstance that is of interest to financial economists.

Remark: A concern with our closed form solution is that it only determines the price-dividend ratio
14Recently, Collard, Feve and Ghattassi (2006) examine a solution of an internal habit model with a truncated

normal distribution.
15See CCCH for a discussion of the properties of analytic functions.
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in the interval (−∞,− lnK2
K1

) in which the marginal utility of consumption is positive. However, the

original integral equation (2.3) requires the price-dividend ratio to be evaluated at dividend growth

rates in which the marginal utility is negative. To ascertain whether or not this defect is substantial

we considered an alternative asset pricing problem: Let

P (1)(x) =
K0e

K1x

1−K2eK1x
M(x) +

1√
2πσ

K0e
K1x

1−K2eK1x

∫ ν̄

−∞
e−

1
2σ2 [ν−ψ(x)]2 (1−K2e

K1ν
)
P (1)(ν) dν .

(3.10)

Here the dividend growth rate, ν̄, is chosen such that the marginal utility is always positive K2e
K1ν̄ <

1. In addition, P (1)(x) is the solution to the integral equation (3.10) rather than (2.3). We can show

that the integral equation (3.10) has a unique solution in the space C((−∞, ν̄]) with P (1)(x) ≤ P (x)

for x ∈ [−ν̄, ν̄].16

Using the parameters so that the equity premium and risk free interest rate matches their historic

averages, we find ν̄ = 0.29. As a result, the price-dividend function is set to zero for dividend growth

which is over eight standard deviations above its historic average, 0.017. For these extreme values of

dividend growth the investor freely disposes of the equity since they do not place positive marginal

utility on the stock. Consequently, it is as if we set the price-dividend equal to zero for x ∈ (ν̄,∞).17

Our strategy is to show that the solution P (1)(x) to the integral equation (3.10) is insignificantly

different from our closed form solution as long as dividend growth is within the interval x ∈ [−ν̄, ν̄].

Thus, our closed form solution within the range [−ν̄, ν̄] is an accurate representation of the solution

to the hybrid asset pricing model that rules out negative marginal utility of consumption.

An alternative way to specify investor’s behavior in the integral equation (3.10) is to change the

distribution of dividend growth from a Gaussian distribution to a truncated Gaussian distribution. In

this case the integral in (3.10) is divided by f(x) = 1√
2πσ

∫ ν̄
−∞ e

− 1
2σ2 [ν−ψ(x)]2 dν where ν̄ is set so that

the marginal utility is always positive. For the parameters, which yield the correct equity premium

and risk free interest rate, f(x) is estimated to range from 0.9999999999800 to 0.9999999999999 for

x ∈ [−8σ, 8σ]. In addition, the mathematical comparison between the integral equation (3.10) and

16We only compare P (1) with our closed form solution within a compact interval so that the sup norm is well defined
in the calculation of the error.

17The P (x) for x > ν̄ is not used in our estimation of the error since the comparison can be made using Q(x) not
P (x). As a result, our error analysis only deals with the P (x) for x ∈ [−ν̄, ν̄].
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our closed form solution increases substantially in its complexity, since the function f(x) has no

closed form expression. Thus, we decided to use the integral equation (3.10) to represent the true

asset pricing model.

If (3.10) is viewed as the true representation of investor’s behavior, then in an Appendix we

provide an estimate of how close our closed form solution is to the true model for the price-dividend

function within the interval [−ν̄, ν̄]. Below we find that the equity premium and risk free interest

rate matches the historic averages over the last century in the United States for the parameters,

γ = 3.25, β = 0.9765, ρ = 0.5, σ = 0.036, x = 0.017, and φ = −0.14. With these parameters

we find that this estimate is less than 40 cents out of a million dollars worth of stock for dividend

growth within the range of 0.017 ± 7.5σ. Thus, the closed form solution in Theorem 1 is a precise

representation of our hybrid asset pricing model for any situation a financial economist is concerned

about.

4 Constructing a Solution to the Asset Pricing Model

The solution for Q will be the limit of a sequence of functions {Qn | n ∈ Z+ } which we shall

construct recursively for each n ∈ Z+, by starting with Q0(x) = K2, and setting

Qn+1(x) = K0M(x) +K0
eK1ψ(x)+ 1

2
σ2K2

1

√
2πσ

∫ ∞
−∞

e−
1

2σ2 {y−[ψ(x)+σ2K1]}2Qn(y) dy . (4.11)

Our goal is to show that recursive formula (4.11) has a well defined limit Q(x). Moreover, we would

like to show that we can pass the limit under the integral sign in formula (4.11). More precisely, we

would like to justify the following operations

Q(x) = limn→∞Qn+1(x)

= limn→∞

[
K0M(x) +K0

eK1ψ(x)+ 1
2σ

2K2
1√

2πσ

∫∞
−∞ e

− 1
2σ2 {y−[ψ(x)+σ2K1]}2Qn(y) dy

]
= K0M(x) +K0

eK1ψ(x)+ 1
2σ

2K2
1√

2πσ

∫∞
−∞ e

− 1
2σ2 {y−[ψ(x)+σ2K1]}2 [limn→∞Qn(y)] dy

= K0M(x) +K0
eK1ψ(x)+ 1

2σ
2K2

1√
2πσ

∫∞
−∞ e

− 1
2σ2 {y−[ψ(x)+σ2K1]}2Q(y) dy .

Then, the so constracted Q will be a solution to the integral equation (2.6).

We shall begin the process of constructing the sequence (4.11) with the following lemma, which

will help us find a closed form for its terms and its limit.
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Lemma 4.1. If fa(x) = eaK1ψ(x) for some a ∈ R, then

1√
2πσ

∫ ∞
−∞

e−
1

2σ2 {y−[ψ(x)+σ2K1]}2fa(y) dy = C(a)eaφK1ψ(x) ,

where C(a) = e
1
2
a2φ2σ2K2

1+aK1[K1σ2φ+σ2(1−γ)+x0].

Proof: By the definitions of fa and ψ, we obtain

1√
2πσ

∫ ∞
−∞

e−
1

2σ2 {y−[ψ(x)+σ2K1]}2fa(y) dy =
1√
2πσ

∫ ∞
−∞

e−
1

2σ2 {y−[ψ(x)+σ2K1]}2+aK1ψ(y) dy .

and
− 1

2σ2 {y − [ψ(x) + σ2K1]}2 + aK1ψ(y)
= − 1

2σ2 {y − [ψ(x) + σ2K1(1 + aφ)]}2 + aφK1ψ(x)
+1

2a
2φ2σ2K2

1 + aK1[K1σ
2φ+ σ2(1− γ) + x0] .

Therefore, we conclude that 1√
2πσ

∫∞
−∞ e

− 1
2σ2 {y−[ψ(x)+σ2K1]}2fa(y) dy = C(a)eaφK1ψ(x).18

Applying Lemma 4.1 repeatedly allows us to find a closed form formula for the consecutive

differences Qn+1(x)−Qn(x).

Lemma 4.2. For any n ∈ Z+, we have

Qn+1(x)−Qn(x) = (K0 −K2) (K0)n e
φn−1
φ−1

K1ψ(x)+n
2
σ2K2

1+An+nB
,

where An and B are given by (3.8) and (3.9), respectively.

Proof: Note that Q0(x) = K2 and M(x) = 1−K2e
K1ψ(x)+ 1

2
σ2K2

1 . By the recursive formula (4.11),

we obtain

Q1(x) = K0M(x) +K0
eK1ψ(x)+ 1

2
σ2K2

1

√
2πσ

∫ ∞
−∞

e−
1

2σ2 {y−[ψ(x)+σ2K1]}2K2 dy = K0 .

If n = 0, then

Q1(x)−Q0(x) = K0 −K2 = (K0 −K2) (K0)0 e
φ0−1
φ−1

K1ψ(x)+ 0
2
σ2K2

1

−1∏
i=0

C

(
φi − 1
φ− 1

)
,

where
∏−1
i=0C

(
φi−1
φ−1

)
= 1, and hence the formula in the lemma holds.

18By the definition of the function C, we have C(0) = e0 = 1.
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Suppose that for some n ∈ Z+,

Qn+1(x)−Qn(x) = (K0 −K2) (K0)n e
φn−1
φ−1

K1ψ(x)+n
2
σ2K2

1

n−1∏
i=0

C

(
φi − 1
φ− 1

)
.

We shall show that the formula for Qn+2(x) − Qn+1(x) in the lemma also holds. By the recursive

formula (4.11) and Lemma 4.1, we can find

Qn+2(x)−Qn+1(x) = K0
eK1ψ(x)+ 1

2σ
2K2

1√
2πσ

∫∞
−∞ e

− 1
2σ2 {y−[ψ(x)+σ2K1]}2 [Qn+1(y)−Qn(y)] dy

= (K0 −K2) (K0)n+1 e
n+1

2
σ2K2

1
∏n−1
i=0 C

(
φi−1
φ−1

)
× eK1ψ(x)
√

2πσ

∫∞
−∞ e

− 1
2σ2 {y−[ψ(x)+σ2K1]}2fφn−1

φ−1
(y) dy

= (K0 −K2) (K0)n+1 e
n+1

2
σ2K2

1
∏n−1
i=0 C

(
φi−1
φ−1

)
×C

(
φn−1
φ−1

)
e

“
φn−1
φ−1

φ+1
”
K1ψ(x)

= (K0 −K2) (K0)n+1 e
φn+1−1
φ−1

K1ψ(x)+n+1
2
σ2K2

1
∏n
i=0C

(
φi−1
φ−1

)
.

By the mathematical induction method, the formula

Qn+1(x)−Qn(x) = (K0 −K2) (K0)n e
φn−1
φ−1

K1ψ(x)+n
2
σ2K2

1

n−1∏
i=0

C

(
φi − 1
φ− 1

)
holds for all n ∈ Z+.

By the definition of the function C in Lemma 4.1, we have

n−1∏
i=0

C

(
φi − 1
φ− 1

)
= e

1
2
φ2σ2K2

1

Pn−1
i=0

„
φi−1
φ−1

«2

+K1[K1σ2φ+σ2(1−γ)+x0]
Pn−1
i=0

φi−1
φ−1

.

It suffices to show that the exponent on the right hand side equals An + nB.

1
2K

2
1σ

2φ2
∑n−1

i=0

(
φi−1
φ−1

)2
+K1[K1σ

2φ+ σ2(1− γ) + x0]
∑n−1

i=0
φi−1
φ−1

= K2
1σ

2φ2

2(φ−1)2(φ2−1)
(φ2n − 1)− K2

1σ
2φ2

(φ−1)3 (φn − 1) + K2
1σ

2φ2

2(φ−1)2n

+K1[K1σ2φ+σ2(1−γ)+x0]
(φ−1)2 (φn − 1)− K1[K1σ2φ+σ2(1−γ)+x0]

φ−1 n

= K2
1σ

2φ2

2(φ−1)2(φ2−1)
(φ2n − 1) + K1(φ−1)[x0+σ2(1−γ)]−K2

1σ
2φ

(φ−1)3 (φn − 1)

+−K
2
1σ

2φ2+2K2
1σ

2φ−2K1(φ−1)[x0+σ2(1−γ)]
2(φ−1)2 n

= An + nB .

The explicit formula given in Lemma 4.2 allows us to determine when the series
∑∞

n=0[Qn+1(x)−

Qn(x)] is absolutely convergent.
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Lemma 4.3. If |φ| < 1 and K4 = K0e
K2

1σ
2−2K1(φ−1)[x0+σ2(1−γ)]

2(φ−1)2 < 1, then for any x ∈ R the series∑∞
n=0[Qn+1(x)−Qn(x)] is absolutely convergent.

Proof: By Lemma 4.2, Qn+1(x) − Qn(x) = (K0 −K2) (K0)n e
φn−1
φ−1

K1ψ(x)+n
2
σ2K2

1+An+nB. When

|φ| < 1, we have limn→∞ φ
n = 0, whence e

φn−1
φ−1

K1ψ(x)+An is a bounded sequence. Write M for an

upper bound of the sequence e
φn−1
φ−1

K1ψ(x)+An . By the definition of the constant B in Theorem 3.1,

we obtain σ2K2
1 + 2B = K2

1σ
2−2K1(φ−1)[x0+σ2(1−γ)]

(φ−1)2 . By Lemma 4.2, for each n ∈ Z+ we have

|Qn+1(x)−Qn(x) | =
∣∣∣∣(K0 −K2) (K0)n e

φn−1
φ−1

K1ψ(x)+An+n
2

(σ2K2
1+2B)

∣∣∣∣
≤M |K0 −K2|

(
K0e

K2
1σ

2−2K1(φ−1)[x0+σ2(1−γ)]

2(φ−1)2

)n
.

Since K0e
K2

1σ
2−2K1(φ−1)[x0+σ2(1−γ)]

2(φ−1)2 < 1, the series
∑∞

n=0 |Qn+1(x)−Qn(x)| is convergent by the direct

comparison test for convergent series.

A Closed Form Solution. We can now construct a candidate solution to the integral equation

(2.6) based on the sequence Qn in (4.11). For each x ∈ R, we define

Q(x) = Q0(x) +
∑∞

n=0[Qn+1(x)−Qn(x)]

= K2 +
∑∞

n=0

[
(K0 −K2) (K0)n e

φn−1
φ−1

K1ψ(x)+n
2
σ2K2

1+An+nB
]
.

It is evident that Q(x) = limn→∞Qn(x) for any x ∈ R.

Lemma 4.4. The sequence Qn uniformly converges to the continuous function Q on any bounded

interval [a, b]. In addition, for any x ∈ R, we have

lim
n→∞

1√
2πσ

∫ ∞
−∞

e−
1

2σ2 {y−[ψ(x)+σ2K1]}2 [Q(y)−Qn(y)] dy = 0 .

Proof: Recall that for each n ∈ Z+, we defined

An =
K2

1σ
2φ2

2(φ− 1)2(φ2 − 1)
(φ2n − 1) +

K1(φ− 1)[x0 + σ2(1− γ)]−K2
1σ

2φ

(φ− 1)3
(φn − 1) .

Set Amax = supn∈Z+ |An|. Since |φ| < 1, we can find the following estimate for Amax:

Amax ≤
K2

1σ
2φ2

2(1− φ)2(1− φ2)
+
K1(1− φ)[x0 + σ2(1− γ)] +K2

1σ
2|φ|

(1− φ)3
(1 + |φ|).
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For any N ∈ Z+, we have

QN (x) = Q0(x) +
∑N−1

n=0 [Qn+1(x)−Qn(x)]

= K2 +
∑N−1

n=0

[
(K0 −K2) (K0)n e

φn−1
φ−1

K1ψ(x)+n
2
σ2K2

1+An+nB
]
.

We obtain the following estimate:

|Q(x)−QN (x) | ≤
∑∞

n=N

[
|K0 −K2| (K0)n e

φn−1
φ−1

K1ψ(x)+An+n
2

(σ2K2
1+2B)

]
≤ |K0 −K2| e

1+|φ|
1−φ K1|ψ(x)|+Amax

∑∞
n=N

(
K0e

K2
1σ

2−2K1(φ−1)[x0+σ2(1−γ)]

2(φ−1)2

)n
= |K0 −K2| e

1+|φ|
1−φ K1|ψ(x)|+Amax (K4)N

1−K4
,

(4.12)

where K4 = K0e
K2

1σ
2−2K1(φ−1)[x0+σ2(1−γ)]

2(φ−1)2 < 1, according to the assumption in Theorem 3.1.

Recall that ψ(x) = φx+ x0 + σ2(1− γ). We have the inequality

|ψ(x)| ≤ |φ| |x|+ |x0|+ σ2|1− γ| . (4.13)

Define ψmax = maxx∈[a,b] |ψ(x)|. For any n ∈ Z+ and x ∈ [a, b], by the estimate (4.12) we obtain

|Q(x)−Qn(x) | ≤ |K0 −K2| e
1+|φ|
1−φ K1ψmax+Amax (K4)n

1−K4
.

Note that limn→∞(K4)n = 0. The sequence Qn uniformly converges to Q on [a, b].

Fix an x0 ∈ R. The previous argument shows that the sequence Qn uniformly converges to Q

on the bounded interval [x0−1, x0 + 1]. Since the Qn are continuous, Q is continuous in the interval

(x0 − 1, x0 + 1); in particular, Q is continuous at x0.

We need the following Lemma in the subsequent analysis.

Lemma 4.5. For any A ∈ R, we have 1√
2πσ

∫∞
−∞ e

− y2

2σ2 +A|y| dy ≤ 2e
σ2A2

2 .

Proof: In fact,

1√
2πσ

∫∞
−∞ e

− y2

2σ2 +A|y| dy

= 1√
2πσ

∫ 0
−∞ e

− y2

2σ2−Ay dy + 1√
2πσ

∫∞
0 e−

y2

2σ2 +Ay dy

= 1√
2πσ

∫ 0
−∞ e

− 1
2σ2 (y+σ2A)2+σ2A2

2 dy + 1√
2πσ

∫∞
0 e−

1
2σ2 (y−σ2A)2+σ2A2

2 dy

≤ e
σ2A2

2√
2πσ

∫∞
−∞ e

− 1
2σ2 (y+σ2A)2

dy + e
σ2A2

2√
2πσ

∫∞
−∞ e

− 1
2σ2 (y−σ2A)2

dy = 2e
σ2A2

2 .
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Let ε > 0. Note that K4 = K0e
K2

1σ
2−2K1(φ−1)[x0+σ2(1−γ)]

2(φ−1)2 < 1. By the estimates (4.12) and (4.13),

for any n ∈ Z+ and y ∈ R we have

|Q(y)−Qn(y) | ≤ |K0 −K2| e
1+|φ|
1−φ |φ|K1|y|+ 1+|φ|

1−φ K1(|x0|+σ2|1−γ|)+Amax (K4)n

1−K4

= Mmax e
|φ|+φ2

1−φ K1|y|(K4)n ≤Mmax e
|φ|+φ2

1−φ K1|y| ,

whereMmax = |K0−K2|
1−K4

e
1+|φ|
1−φ K1(|x0|+σ2|1−γ|)+Amax . It follows easily from Lemma 4.5 that the improper

integral 1√
2πσ

∫∞
−∞ e

− 1
2σ2 {y−[ψ(x)+σ2K1]}2+

|φ|+φ2

1−φ K1|y| dy converges. Thus, there is a real number a > 0

such that

Mmax√
2πσ

∫ −a
−∞

e
− 1

2σ2 {y−[ψ(x)+σ2K1]}2− |φ|+φ
2

1−φ K1y dy +
Mmax√

2πσ

∫ ∞
a

e
− 1

2σ2 {y−[ψ(x)+σ2K1]}2+
|φ|+φ2

1−φ K1y dy <
ε

2
.

By Lemma 4.4, there is an integer N > 0 such that |Q(y)−Qn(y)| < ε
2 for any n ≥ N and y ∈ [−a, a];

in particular,

1√
2πσ

∫ a

−a
e−

1
2σ2 {y−[ψ(x)+σ2K1]}2 |Q(y)−Qn(y)| dy ≤ ε

2
· 1√

2πσ

∫ ∞
−∞

e−
1

2σ2 {y−[ψ(x)+σ2K1]}2 dy =
ε

2
.

If n ≥ N , then ∣∣∣ 1√
2πσ

∫∞
−∞ e

− 1
2σ2 {y−[ψ(x)+σ2K1]}2 [Q(y)−Qn(y)] dy

∣∣∣
≤ 1√

2πσ

∫∞
−∞ e

− 1
2σ2 {y−[ψ(x)+σ2K1]}2 |Q(y)−Qn(y)| dy

≤ Mmax√
2πσ

∫ −a
−∞ e

− 1
2σ2 {y−[ψ(x)+σ2K1]}2− |φ|+φ

2

1−φ K1y dy

+Mmax√
2πσ

∫∞
a e

− 1
2σ2 {y−[ψ(x)+σ2K1]}2+

|φ|+φ2

1−φ K1y dy

+ 1√
2πσ

∫ a
−a e

− 1
2σ2 {y−[ψ(x)+σ2K1]}2 |Q(y)−Qn(y)| dy

< ε
2 + ε

2 = ε .

Therefore, limn→∞
1√
2πσ

∫∞
−∞ e

− 1
2σ2 {y−[ψ(x)+σ2K1]}2 [Q(y)−Qn(y)] dy = 0.

Before we proceed further, we consider the condition for the uniform convergence of the sequence

of functions (4.11) to the marginal value of the expected price-dividend ratio, Q, and of the current

price-dividend ratio, P . In (2.6), the investor compares the investment’s current value Q(x) with

its future value Q(ν). The condition K4 < 1 means that the investor places less weight on the

future value. If the future value had a higher weight, the current value would tend to infinity since

the future value increases with time. Consequently, a heavier weight on the future value would be
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comparable to making the time value of money closer to zero. This is the reason that condition

K4 < 1 is necessary for a finite valuation of the stock price.

We examine this condition using the parameters: σ = 0.036, φ = −0.14, x0 = (1 − φ)0.017.

These three parameters are taken from Mehra and Prescott (1985) (MP) which represent the sta-

tistical properties of dividend growth in thier data set. For purposes of comparability we use these

parameters for dividend growth throughout the paper. Figure 1 shows the three dimensional space

given by the inequality K4 < 1 in the variables β and γ, which allows us to visualize the condition

for the existence of a finite equity price. The values of relative risk aversion, γ (gam), and the

discount factor, β (beta), vary between [0, 35] and [0.94, 1], respectively. In general, the convergence

condition is satisfied; however, as β approaches one, the condition is violated for low (≈ 1) and high

(≈ 31) coefficients of relative risk aversion, γ. The investor places too much weight on the future

as the discount factor approaches one.19 In the habit persistence cases (α = 1), the price-dividend

function is convergent for the same values of β and γ, since the condition K4 < 1 is not dependent

on the constant K2.

5 Uniqueness of the Closed Form Solution (3.7)

Next we shall prove that our candidate solution is a solution to the integral equation (2.6), and then

we shall show that it is unique in the space CL∞(R, e|x|). We begin with the next lemma showing

an exponential bound for the candidate solution.

Lemma 5.1. There is a real number M ≥ 0 such that |Q(x)| ≤Me
|φ|+φ2

1−φ K1|x| for all x ∈ R.

Proof: Recall that Mmax = |K0−K2|
1−K4

e
1+|φ|
1−φ K1(|x0|+σ2|1−γ|)+Amax and Q0(x) = K2. The estimates

(4.12) and (4.13) yield |Q(x)| ≤ |K2| + Mmaxe
|φ|+φ2

1−φ K1|x|. Set M = |K2| + Mmax. Then |Q(x)| ≤

Me
|φ|+φ2

1−φ K1|x| for any x ∈ R .

This bound allows us to establish that the integral in (2.6) converges. In fact, in our next lemma,

we shall prove a more general result, which will be useful for our uniqueness proof.
19These values are slightly different from those found by Burnside for the MP case. However,we show that our

condition K4 < 1 is the optimal condition for the convergence of the unique solution for Q, (3.7), to the integral
equation for Q, (2.6).
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Lemma 5.2. Let f be a continuous function and p > 0 a real number. If there are real numbers M >

0 and k such that |f(y)| ≤Mek|y| for all y ∈ R, then the improper integral 1√
2πσ

∫∞
−∞ e

− y2

2σ2 |f(y)|p dy

converges.

Proof: Thanks to the continuity of f , it suffices to show that 1√
2πσ

∫∞
−∞ e

− y2

2σ2 |f(y)|p dy is finite. By

Lemma 4.5, we have

1√
2πσ

∫∞
−∞ e

− y2

2σ2 |f(y)|p dy ≤ 1√
2πσ

∫∞
−∞ e

− y2

2σ2
(
Mek|y|

)p
dy ≤ 2Mpe

σ2p2k2

2 .

Therefore, the improper integral 1√
2πσ

∫∞
−∞ e

− y2

2σ2 |f(y)|p dy converges.

This property of our candidate solution suggests that we want to seek a solution in a vector

space with weighted measure. Suppose that we consider the measurable space (R,BR, µ) with BR

the Borel σ-algebra on R. The formula

µ(E) =
1√
2πσ

∫ ∞
−∞

e−
y2

2σ2 χE(y) dy for any E ∈ BR

defines its measure, where χE is the characteristic function of E. It is well-known that each continu-

ous function is (Lebesgue) measurable with respect to µ. We seek a solution to the integral equation

(2.6) in the following vector space.

Definition 2. Let p > 1. CLp(R, dµ) is the real vector space consisting of all the continuous

functions f such that 1√
2πσ

∫∞
−∞ e

− y2

2σ2 |f(y)|p dy converges, where dµ = e−
y2

2σ2 dy. We define the

norm on Lp(R, dµ) by

‖f‖p =
(

1√
2πσ

∫ ∞
−∞

e−
y2

2σ2 |f(y)|p dy
)1/p

for any f ∈ Lp(R, dµ) .

By Lemmas 5.1 and 5.2, we see Q ∈ CLp(R, dµ) since CL∞(R, e|y|) ⊂ CLp(R, dµ). Our strategy

is to show that the solution Q is unique in the bigger space CLp(R, dµ). Therefore, it will be unique

in the smaller space CL∞(R, e|y|)

The next step is to establish a condition under which the operator defined by the integral in

(2.6) maps functions from CLp(R, dµ) to CLp(R, dµ).
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Lemma 5.3. Let p > 1. If |φ| <
√

1− 1
p , then for any f ∈ CLp(R, dµ) the function Tf given by

(Tf)(x) = K0
eK1ψ(x)+ 1

2
σ2K2

1

√
2πσ

∫ ∞
−∞

e−
1

2σ2 {y−[ψ(x)+σ2K1]}2f(y) dy

lies in CLp(R, dµ).

Proof: Set q = p
p−1 and Ψ(x) = ψ(x) + σ2K1. By Hölder’s inequality20, we have the estimate∣∣∣ 1√

2πσ

∫∞
−∞ e

− 1
2σ2 [y−Ψ(x)]2f(y) dy

∣∣∣p
=
∣∣∣∣e− 1

2σ2 [Ψ(x)]2 · 1√
2πσ

∫∞
−∞ e

− y2

2σ2 + y

σ2 Ψ(x)f(y) dy
∣∣∣∣p

≤ e−
p

2σ2 [Ψ(x)]2
(

1√
2πσ

∫∞
−∞ e

− y2

2σ2

∣∣∣e y

σ2 Ψ(x)f(y)
∣∣∣ dy)p

≤ e−
p

2σ2 [Ψ(x)]2
(

1√
2πσ

∫∞
−∞ e

− y2

2σ2 e
qy

σ2 Ψ(x) dy

)p/q (
1√
2πσ

∫∞
−∞ e

− y2

2σ2 |f(y)|p dy
)

= e−
p

2σ2 [Ψ(x)]2
(

1√
2πσ

∫∞
−∞ e

− 1
2σ2 [y−qΨ(x)]2+ q2

2σ2 [Ψ(x)]2 dy

)p/q
‖f‖pp

= e
p(q−1)

2σ2 [Ψ(x)]2‖f‖pp = e
q

2σ2 [Ψ(x)]2‖f‖pp .

Note that ψ(y) = φy+x0 +σ2(1−γ). Then [ψ(y)]2 = φ2y2 + 2φ[x0 +σ2(1−γ)]y+ [x0 +σ2(1−γ)]2.

Consequently,

1√
2πσ

∫∞
−∞ e

− y2

2σ2 |(Tf)(y)|p dy

≤ 1√
2πσ

∫∞
−∞ e

− y2

2σ2 (K0)p epK1ψ(y)+ p
2
σ2K2

1 · e
q

2σ2 [ψ(y)+σ2K1]2‖f‖pp dy

= (K0‖f‖p)p 1√
2πσ

∫∞
−∞ e

− y2

2σ2 +pK1ψ(y)+ p
2
σ2K2

1+ q

2σ2 [ψ(y)+σ2K1]2 dy.

Using 1
p + 1

q = 1 and p+ q = pq, we may simplify the exponent inside the integral:

− y2

2σ2 + pK1ψ(y) + p
2σ

2K2
1 + q

2σ2 [ψ(y) + σ2K1]2

= −1−qφ2

2σ2

{
y − qφ

1−qφ2 [x0 + σ2(1− γ) + pσ2K1]
}2

+ q
2σ2(1−qφ2)

[x0 + σ2(1− γ) + pσ2K1]2 − p2

2 σ
2K2

1 .

Since |φ| <
√

1− 1
p , or equivalently, 1− qφ2 > 0, we see that

1√
2πσ

∫∞
−∞ e

− y2

2σ2 |(Tf)(y)|p dy

≤ 1√
1−qφ2

e
q

2σ2(1−qφ2)
[x0+σ2(1−γ)+pσ2K1]2− p

2

2
σ2K2

1 (K0‖f‖p)p

≤
(

1− pφ2

p−1

)− 1
2
e

p

2σ2(p−1−pφ2)
[x0+σ2(1−γ)+pσ2K1]2− p

2

2
σ2K2

1 (K0‖f‖p)p .

20See Folland (1984, p.174)
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Therefore, Tf ∈ CLp(R, dµ).

The computations in the proof of Lemma 5.3 show that T : CLp(R, dµ) −→ CLp(R, dµ) is

continuous linear operator and satisfies the inequality

‖T‖p ≤ K0

(
1− pφ2

p− 1

)− 1
2p

e
1

2σ2(p−1−pφ2)
[x0+σ2(1−γ)+pσ2K1]− p

2
σ2K2

1 . (5.14)

This means that the linear operator is a contraction mapping when ‖T‖p < 1. Therefore, we have

the following lemma.

Lemma 5.4. Let p > 1. If we assume that |φ| <
√

1− 1
p and

K0

(
1− pφ2

p− 1

)− 1
2p

e
1

2σ2(p−1−pφ2)
[x0+σ2(1−γ)+pσ2K1]− p

2
σ2K2

1 < 1 ,

then the operator T : CLp(R, dµ) −→ CLp(R, dµ) is a contraction, and therefore Q is the unique

solution to the integral equation (2.6) in CLp(R, dµ).

Proof: Suppose that P ∈ CLp(R, dµ) is another function satisfying the integral equation (2.6).

Then for any x ∈ R, we have

P (x)−Q(x) = K0
eK1ψ(x)+ 1

2σ
2K2

1√
2πσ

∫∞
−∞ e

− 1
2σ2 {y−[ψ(x)+σ2K1]}2 [P (y)−Q(y)] dy

= [T (P −Q)](x) .

Now, using inequality (5.14), which reads ‖T‖p < 1, we have ‖P −Q‖p = ‖T (P −Q)‖p < ‖P −Q‖p,

which is impossible. Therefore there is no other Q solution in CLp(R, dµ).

Finally, we establish that the linear operator T can be restricted to CL∞(R, e|y|).

Lemma 5.5. For any p > 1, we have CL∞(R, e|y|) ⊆ CLp(R, dµ) and T restricts to a linear

operator on CL∞(R, e|y|).

Proof: The first statement follows easily from Lemma 5.2.

Let f ∈ CL∞(R, e|y|). There are real numbers M > 0 and k such that |f(y)| ≤ Mek|y| for all
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y ∈ R. By the definition of T in Lemma 5.3 and the result in Lemma 4.5, for any x ∈ R we have

|(Tf)(x)| ≤ K0
eK1ψ(x)+ 1

2σ
2K2

1√
2πσ

∫∞
−∞ e

− 1
2σ2 {y−[ψ(x)+σ2K1]}2 |f(y)| dy

≤MK0
e
K1ψ(x)+ 1

2σ
2K2

1−
1

2σ2 [ψ(x)+σ2K1]2

√
2πσ

∫∞
−∞ e

− y2

2σ2 + 1
σ2 [ψ(x)+σ2K1]y+k|y| dy

≤MK0
e
K1ψ(x)+ 1

2σ
2K2

1−
1

2σ2 [ψ(x)+σ2K1]2

√
2πσ

∫∞
−∞ e

− y2

2σ2 + 1
σ2 [|ψ(x)|+σ2K1+σ2k]|y| dy

≤ 2MK0 e
K1ψ(x)+ 1

2
σ2K2

1−
1

2σ2 [ψ(x)+σ2K1]2+ 1
2σ2 [|ψ(x)|+σ2K1+σ2k]2

= 2MK0 e
1
2
σ2(k+K1)2+(k+K1)|ψ(x)|

≤ 2MK0 e
1
2
σ2(k+K1)2+(k+K1)|x0+σ2(1−γ)| e(k+K1)|φ||x| .

Therefore, Tf ∈ CL∞(R, e|y|).

Thus, we can establish that our candidate solution is the unique solution to the integral equation

(2.6) in the space CL∞(R, e|y|).

Lemma 5.6. If |φ| < 1 and K4 = K0e
K2

1σ
2−2K1(φ−1)[x0+σ2(1−γ)]

2(φ−1)2 < 1, then the solution Q is unique in

the space CL∞(R, e|y|).

Proof: Suppose that Q̄ ∈ CL∞(R, e|y|) is another function which satisfies the integral equation

(2.6). Then we have Q̄−Q = T (Q̄−Q) (see the proof of Lemma 5.4). Note that |φ| < 1. It is easy

to show that

lim
p→∞

[
K0

(
1− pφ2

p− 1

)− 1
2p

e
1

2σ2(p−1−pφ2)
[x0+σ2(1−γ)+pσ2K1]− p

2
σ2K2

1

]
= 0 .

Thus, we can choose a sufficiently large real number p > 1 such that |φ| <
√

1− 1
p and

K0

(
1− p

p− 1
φ2

)− 1
2p

e
1

2σ2(p−1−pφ2)
[x0+σ2(1−γ)+pσ2K1]− p

2
σ2K2

1 < 1 .

By Lemma 5.5, we have Q̄−Q ∈ CLp(R, dµ), whence Lemma 5.4 implies Q̄ = Q.

Remark. If K4 > 1, then the sequence Qn(x) constructed in formula (4.11) is divergent.

Note that limn→∞Qn(x) = Q0(x)+
∑∞

n=0[Qn+1(x)−Qn(x)] and that by Lemma 2 the n-th term

of the series
∑∞

n=0[Qn+1(x)−Qn(x)] is given by

(K0 −K2) (K0)n e
φn−1
φ−1

K1ψ(x)+An+n
2

(σ2K2
1+2B) = (K0 −K2) e

φn−1
φ−1

K1ψ(x)+An(K4)n .

Then Qn+1(x) − Qn(x) approaches ±∞ when K4 > 1. As a result, Qn+1(x) − Qn(x) approaches

(K0 −K2) e
1

1−φK1ψ(x)+
K2

1σ
2φ2

2(φ−1)2(1−φ2)
+
K1(1−φ)[x0+σ2(1−γ)]−K2

1σ
2φ

(1−φ)3 6= 0 when K4 = 1. In addition, the series∑∞
n=0[Qn+1(x)−Qn(x)], and hence the sequence Qn(x), is divergent.
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6 Properties of Solution to the Asset Pricing Model

The exact solution for the price-dividend ratio in the hybrid asset pricing model is found by sub-

stituting the unique solution for Q in (3.7) into the equation for Q in (2.4), and solving for the

price-dividend ratio P . Thus, the solution to our generalization of Abel’s price-dividend function is

P (x) =
K2e

K1x

1−K2eK1x
+

K0 −K2

1−K2eK1x

∞∑
n=0

[
(K0)n e

φn+1−1
φ−1

K1x+φn−1
φ−1

[x0+σ2(1−γ)]K1+n
2
σ2K2

1+An+nB
]
.

(6.15)

We are now able to establish properties (c-i) to (c-iii) for the price-dividend function. We start

by showing that the price-dividend function is increasing in dividend growth.

Proposition 6.1. (i) If 0 < K2 6 K4, then P is positive and increasing in the interval (−∞,− lnK2
K1

).

(ii) If K2 = 0, then P is positive and increasing in (−∞,∞).

Proof: (i) Recall that

P (x) =
K2e

K1x

1−K2eK1x
+

K0 −K2

1−K2eK1x

∞∑
n=0

[
(K0)n e

φn+1−1
φ−1

K1x+φn−1
φ−1

[x0+σ2(1−γ)]+An+n
2

(σ2K2
1+2Bn)

]
.

Note that the functions eK1x, 1
1−K2eK1x

, and e
1−φn+1

1−φ K1x for n ∈ Z+ are positive and increasing in

(−∞,− lnK2
K1

). Therefore, P is positive and increasing in (−∞,− lnK2
K1

).

Statement (ii) can be verified in the same way.

From Proposition 1 (ii), we can infer that the price-dividend function is monotonic for all values

of dividend growth for the Mehra and Prescott case and the external habit version of Abel’s model

(ρ = 0 and K2 = 0). However, for the internal habit version of Abel’s model (ρ = 1), the price-

dividend function is well defined only when the marginal utility of consumption is positive, i.e.

when the dividend growth is in the interval (−∞,− lnK2
K1

). When using the MP parameters in Abel’s

internal habit model, the price-dividend function is increasing only in the interval (−∞, 0.025), which

means that the range of permissible dividend growth rates is less than 0.6942 standard deviations.

When the dividend growth rate is 0.025, the price-dividend ratio is undefined since the the marginal

utility, in the denominator in (6.15), is zero. By lowering the internal habit weight in our hybrid
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model to 50% (ρ = 0.5), the range of permissible dividend growth rates increases to a more reasonable

interval (−∞, 0.29), which is more than 0.017 + 7.5σ.21

CCCH show that the price-dividend function is analytic for both the Mehra-Prescott case and the

external habit version of Abel’s asset pricing model. The explicit solution allows us to confirm these

results, as well as to analyze the hybrid asset pricing model. First, we demonstrate the conditions

under which the price-dividend function is infinitely differentiable.

Lemma 6.2. If K2e
K1x < 1, then P is infinitely differentiable.

Proof: For proving this lemma it suffices to show that Q is infinitely differentiable, and

Q(k)(x) = δ0,kK2 +
∞∑
n=0

(
φn+1 − φ
φ− 1

K1

)k [
(K0 −K2) (K0)n e

φn−1
φ−1

K1ψ(x)+n
2
σ2K2

1+An+nB
]
,

where δ0,k is the Kronecker delta. Recall that Q(x) = K2 +
∑∞

n=0[Qn+1(x)−Qn(x)], where

Qn+1(x)−Qn(x) = (K0 −K2) (K0)n e
φn−1
φ−1

K1ψ(x)+n
2
σ2K2

1+An+nB
.

It is easy to show with mathematical induction that for any integer k ≥ 1,

dk

dxk
[Qn+1(x)−Qn(x)] = (K0 −K2) (K0)n

(
φn+1 − φ
φ− 1

K1

)k
e
φn−1
φ−1

K1ψ(x)+n
2
σ2K2

1+An+nB

=
(
φn+1 − φ
φ− 1

K1

)k
[Qn+1(x)−Qn(x)] .

Let [a, b] be an arbitrary bounded closed interval. Set ψmax = maxx∈[a,b] |ψ(x)| and Amax =

supn∈Z+ An. For any k ∈ Z+ and x ∈ [a, b], we have from the proof for Lemma 4.3∣∣∣∣ dkdxk [Qn+1(x)−Qn(x)]
∣∣∣∣ ≤ |K0 −K2| e

2K1
1−φψmax+Amax

(
2K1|φ|
1− φ

)k
(K4)n

By the Weierstrass M -test, the series of functions

∞∑
n=0

dk

dxk
[Qn+1(x)−Qn(x)] =

∞∑
n=0

(
φn+1 − φ
φ− 1

K1

)k
[Qn+1(x)−Qn(x)]

21In an earlier version of this paper we set ρ = 0.71 so that dividend growth was restricted to (−∞, 0.24) which is
about seven standard deviations. In this case this estimate increases by about 10 times. We reduced ρ since the risk
free interest rate was too high.
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is uniformly convergent on [a, b]. Hence for any k ∈ Z+, we have

Q(k)(x) = δ0,kK2 +
∞∑
n=0

(
φn+1 − φ
φ− 1

K1

)k [
(K0 −K2) (K0)n e

φn−1
φ−1

K1ψ(x)+n
2
σ2K2

1+An+nB
]
.

Thus, the function Q is infinitely differentiable. The infinite differentiability of the price-dividend

function P is an immediate consequence of the infinite differentiability of Q and eK1x

1−K2eK1x
, provided

that K2e
K1x 6= 1.

Recall that a function f is said to be analytic at x0 if there is a real number rx0 > 0 such that

f(x) =
∑∞

k=0
f (k)(x0)

k! (x− x0)k for any x ∈ R with |x− x0| < rx0 .

Proposition 6.3. Let x0 be a real number. If K2e
K1x0 < 1, then P is analytic at x0.

Proof: As before, it suffices to show that Q is analytic at any given point x0. More precisely, we

shall show that for any x ∈ R

Q(x) =
∞∑
k=0

Q(k)(x0)
k!

(x− x0)k,

which reads that Q is analytic at x0 and its power series expansion at x0 has radius of convergence

equal to ∞.

Let RN (x) = Q(x)−
∑N

n=0
Q(k)(x0)

k! (x− x0)k for any N ∈ Z+. Then there exists a real number ξ

between x0 and x such that RN (x) = Q(N+1)(ξ)
(N+1)! (x− x0)N+1 . Choose a sufficiently large real number

µ with x ∈ [x0 − µ, x0 + µ]. Set ψmax = maxx∈[x0−µ,x0+µ] |ψ(x)| and Amax = supn∈Z+ An. For any

integer N ≥ 0, by Lemma 6.2 we have

|RN (x)| =

∣∣∣∣∣Q(N+1)(ξ)
(N + 1)!

(x− x0)N+1

∣∣∣∣∣
≤ 1

(N + 1)!

∞∑
n=0

[(
2K1|φ|
1− φ

)N+1

|K0 −K2| (K4)n e
2K1
1−φψmax+Amax

]
|x− x0|N+1

=
1

(N + 1)!

(
2K1|φ(x− x0)|

1− φ

)N+1 |K0 −K2|
1−K4

e
2K1
1−φψmax+Amax ,

where K4 = K0e
K2

1σ
2−2K1(φ−1)[x0+σ2(1−γ)]

2(φ−1)2 < 1. Since limN→∞
1

(N+1)!

(
2K1|φ(x−x0)|

1−φ

)N+1
= 0, we obtain

Q(x) =
∑∞

k=0
Q(k)(x0)

k! (x−x0)k. Now, the analyticity of the price-dividend function P is an immediate

consequence of the analyticity of Q and eK1x

1−K2eK1x
at x0.
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Proposition 6.3 means that the price-dividend function may be represented by a Taylor series.

These results for the price-dividend function are the best properties an asset pricing model may have

short of an explicit solution. Analyticity of the price-dividend function allows us to represent the

price-dividend function on the computer as

P cn(x) = eK1xQcn(x) = eK1x
n∑
k=0

bk(x− x0)k, (6.16)

for |x − x0| < r, where r is the radius of convergence, x0 is a point at which the price-dividend

function is analytic, and the bk’s are the solution to a linear system of equations which solves the

optimal decision for the investor, (2.3). CCCH find that the series in (6.16) converges to the Taylor

series for the price-dividend function with an error of less than 10−16 for the MP model with nine

coefficients. In an earlier version of this paper we demonstrated that the taylor series approximation

for the price-dividend function in CCCH was essentially identical to the closed form solution.

With the closed form solution to our asset pricing model we can obtain a closed form solution

for stock returns and the equity premium using

Rt+1 =
Dt+1 + Pt+1

Pt
= ex0+φx+ν 1 + P (x0 + φx+ ν)

P (x)
, (6.17)

where we substitute our solution, Equation (6.15), for the current and future price-dividend ratio.

The higher order moments – standard deviation, skewness and kurtosis – are found by integrating

the deviation of (6.17) from its expected value, following the formulas from Mood, Graybill and Boes

(1974 pp. 72-77). We calculate these moments using (6.17) where the integrals for the moments are

evaluated using the evalf(Int(.)) command in Maple. This procedure allows us to control the range

of integration so that the current state of dividend growth never exceeds the critical value below

which the price-dividend ratio is well defined for the internal habit case, ν̄ = 0.29.

The price of a one period zero coupon bond is equal to the expectation of the intertemporal rate

of substitution, i.e., the pricing kernel.22

PB(x) = β
e−γx0+(α(γ−1)−γφ)xt

1−K2eK1x

[
e

1
2
γ2σ2 −K2e

K1(x0+φxt)e
σ2

2
(K1−γ)2

]
. (6.18)

22See Abel (1990).
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The bond returns are calculated using RB(x) = 1
PB(x) − 1. The moments for bond returns are

computed using the same procedures as in the stock return.

7 Simulation

In this section we illustrate the properties of the price-dividend function for the hybrid asset pricing

model using our explicit solution (6.15). We use the parameters: β = 0.9765, γ = 3.25, σ = 0.036,

φ = −0.14, x0 = (1−φ)0.017. The last three parameters are taken from Mehra and Prescott (1985)

(MP) which represent the statistical properties of dividend growth in their data set. The first two

parameters are chosen so that the equity premium and risk free interest rate matches the historic

U. S. averages from 1871 to 2002 when the internal habit is 50%. We also calculate the returns on

stock and bonds based on (6.17) and (6.18). As a result, we are able to identify the split between

internal and external habits so that the equity premium and risk free interest rate is matched with

the data.

7.1 Price-dividend function

We can see the impact of habit on the price-dividend function in Figure 2. The price-dividend

function in the Mehra-Prescott case, near the bottom of the figure, is relatively flat, reflecting

minimal variation in the price-dividend function, and hence variation in returns, for all reasonable

levels of consumption growth. In the Mehra-Prescott case, the price-dividend ratio is 16.32 when

evaluated at the historical average of consumption growth, x = 0.017. The historical average of the

price-dividend ratio is about 22.9.23 By adding external habit, the price-dividend function becomes

steeper and its value at x = 0.017 increases to 41.69, which is higher than the historical average

22.9.24 Finally, we can increase the slope of the price-dividend function further by increasing the

internal habit percentage. In Figure 2 the steepest price-dividend function is for the hybrid habit

model with 50% internal habit. This combination of internal and external habit was selected because
23We use the value based on the MP data, rather than from the Shiller data, to keep the results comparable

with previous research. Using the Shiller values for mean and standard deviation of consumption growth does not
significantly change the implications of our asset pricing model.

24We can match the historical average price-dividend level by lowering the discount factor, β, but this leads to a
risk free rate that is too high.
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it yields an accurate approximation of the historical equity premium and the risk free interest rate,

as well as reasonable standard deviation in stock returns. In this case, the price-dividend ratio

evaluated at the historical average consumption growth rate is not appreciably different from the

external habit case at 41.82 (see Table 1). The standard deviation of returns is 22.9% relative

to the standard deviation of dividend growth 3.6%. Further, the steeper slope indicates that the

price-dividend ratio is more responsive to changes in dividend growth, and this increased response

delivers a higher equity premium to compensate investors for the high standard deviation of stock

returns. This increase in the slope of the price-dividend ratio reflects the lower marginal utility of

consumption, 1−K2e
K1x > 0, as dividend growth increases. In particular, we see that the slope of

the price-dividend function tends to infinity as dividend growth approaches 29.5%, and beyond this

level the price-dividend function is not defined. We do not know the price-dividend function above

this level of dividend growth since the marginal utility is negative. Yet, an error analysis in section 3

demonstrates that this does not materially effect our closed form solution since the error is less than

40 cents out of a million dollar purchase of equity for dividend growth in the interval [−29%, 29%].

7.2 Data Sources

We now want to compare the properties of equity returns with those found in United States data.

The data are from the following sources. The annual data are based on Shiller’s extended historical

sample for the years 1878 to 2002.25 The monthly data for real stock returns and for the 90 day

Treasury bill real interest rate series for the years 1946−2003 are taken from CRSP.26 The daily data

for July, 1962 - December, 2003 are also taken from CRSP, and the 90 day Treasury bill returns come
25We obtained this data from Shiller’s web site at http://www.econ.yale.edu/∼shiller/data.htm. In Shiller’s data

set, real consumption growth data are limited to the time period 1889− 2002.
26We follow Campbell, Lo and MacKinlay (1997, Chapter 1) in calculating the four moments for the returns on stocks

and bonds and for the equity premium. Data is converted to real values by subtracting inflation, as measured by the
monthly CPI. To make the statistics comparable, both the monthly and weekly data are annualized; the standard
deviation and skewness are multiplied by the square root of the number of periods in the year, while the mean and
kurtosis are multiplied by the number of periods in the year. Note that skewness and kurtosis are not annualized in
the ARCH literature, so that our daily figures are larger than those usually reported. See, for example, Rosenberg and
Engle (2002). We also computed the results using both continuous and discrete compounding. We did this to make
sure that the results for the hybrid asset pricing model are not influenced by the use of continuous compounding, since
Abel’s theory uses discrete compounding.
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from FRED II.27 For daily and monthly stock market returns, we use the value weighted S&P 500

series. Results are unchanged when we use the equal weighted S&P 500 series, the equal weighted

total market series, and the value weighted total market series. The monthly nominal stock return

data in Table 3 come from Schwert (1989, 1990).28

7.3 Equity Premium and Higher Order Moments

In Table 1 we record the results for the 50% internal habit model, which we will use to explain

the equity premium puzzle.29 In this case, the standard deviations for stock returns and the equity

premium are about 33% too high and the standard deviation for bond returns is about 400% too big.

The skewness and kurtosis for stock returns are significantly above the historical annual averages.

The kurtosis for stock returns for the 50% internal habit case is less than 1.7% of the daily

value, a relatively close 5.7 times its monthly value, and almost 227 times its annual value. The

skewness has the wrong sign, and it decreases in absolute value as we go from daily to annual data.30

The tendency for the skewness and kurtosis to move towards the normal distribution values as the

frequency of observation declines is an implication of the law of large numbers.31 The skewness and

kurtosis of the equity premium are the same as for stock returns.

The results in Table 1 indicate that the hybrid asset pricing model is superior for explaining

monthly stock returns. To obtain a longer time series for monthly nominal stock returns, we use

Schwert (1989, 1990). In Table 3 we find that the result for this series (1802− 2003) is roughly 70%

of the theoretical kurtosis of stock returns in Table 1. However, the standard deviation is slightly
27See the web site http://research.stlouisfed.org/. Since the data are stated in terms of discount yields, we annualized

the yield by adjusting the period from 360 to 365 days. There are 123 missing observations for the daily T-Bill rate,
so that we have to delete the stock return and equity premium data for these days. This reduces the real stock return
from 0.063 to 0.055. The other three moments do not change significantly.

28We obtained this data from Schwert’s web site http://schwert.ssb.rochester.edu/mstock.htm. The data is updated
after 1925 using CRSP valued weighted market index. We used the discrete compounding formula to be consistent
with Schwert and with our theoretical framework.

29Recall that for a pure internal habit model, both α and ρ equal 1 and the price-dividend function is well defined only
when consumption (dividend) growth is less than 2.50%. To expand the allowable range for consumption (dividend)
growth, we reduce the weight on the internal habit ρ to 50%. This weight is used because with this combination the
hybrid model matches the historical equity premium of 4.2% and the risk free interest rate 2.8%.

30This may be a by-product of the negative autocorrelation of dividend growth found in the Mehra and Prescott
data.

31Bollerslev et al (1994, p. 3000) show that the kurtosis of a GARCH(1,1) process converges to its value for a normal
distribution, 3, as the frequency of observation decreases.
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higher over the monthly sample in Table 1. We also see that the skewness is positive for this sample.

Finally, the kurtosis is significantly higher for the longer sample. Thus, the hybrid asset pricing

model appears to best fit the longer horizon monthly stock return series (1802− 2003).

While we are able to match the risk free interest rate, we find that the standard deviation of the

return on bonds is still too high. This problem of excessive standard deviation of bond returns in

habitual preference models has been found in past research. Previous researchers have introduced

precautionary savings in order to lower the mean and standard deviation of bond returns, while still

matching the equity premium. Campbell and Cochrane (1999) use preferences that place a higher

(lower) weight on the smaller (larger) deviations of consumption (dividend) growth from habitual

levels.32 Cecchetti, Lam and Mark (2000) use distorted beliefs, with excessive pessimism (optimism)

for expansion (contraction) in the Mehra-Prescott case. We plan to introduce precautionary savings

into the hybrid asset pricing model in future research.

8 Conclusion

We derive an explicit formula for the solution to the price-dividend ratio of a generalized Abel

asset pricing model. Abel’s model is generalized in two ways: first, consumption (dividend) growth

is assumed to be an AR(1) process subject to Gaussian random shocks, and second, the investor’s

preferences are allowed to be a convex combination of internal and external habits. We show that our

price-dividend function is increasing, and analytic for all situations that are of interest to financial

economists; i.e., when consumption growth is low enough for the marginal utility of future cash

flows to be positive, which includes all historic levels. The Gaussian distribution assigns positive

probability to dividend growth, which is high enough to make the marginal utility of investment

negative when dividend growth is greater than eight standard deviations. However, we prove that

the resulting error in our closed form solution is less than 40 cents out of a million dollars as long

as dividend growth is inside ± eight standard deviations. From the closed form solution of the asset

pricing model, we develop a closed form solution for the distribution of returns. We characterize
32In the original Campbell and Cochrane model the standard deviation of bond returns was zero. Wachter (2005)

allows for more realistic fluctuations in bond returns.
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our closed form solution to the hybrid habit model using Mehra-Prescott’s (1985) data set. With

an internal habit weight of 50%, and a coefficient of risk aversion 3.25 simulation results match the

historic U.S. equity premium and risk free interest rate. In addition, the distribution of stock returns

generated by our hybrid habit model has kurtosis which is closest to the level of the historic monthly

returns distribution.

Although the magnitude of our theoretical equity premium is correct, the higher moments of the

distributions of one period bond returns are too high. Previous studies find that a precautionary

savings effect reduces excessive moments in bond returns, which suggests that this effect may offer a

solution to the problem in our model. Both Campbell and Cochrane (1999) and Cecchetti, Lam and

Mark (2000) develop models that incorporate precautionary savings. Their models put more (less)

weight on low (high) random shocks to consumption growth. This property generates precautionary

savings, which would control the standard deviation of bond returns. It is possible that precautionary

savings models may also offer a way to control the excessive kurtosis of bond returns. In future

research we plan to integrate the precautionary savings of Campbell and Cochrane into our hybrid

asset pricing model so as to reduce the higher moments of bond returns.
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Error Estimation for The Hybrid Habit Asset Pricing Model

In this appendix with prove the following proposition for P (1).

Proposition 8.1. For −ν̄ 6 x 6 ν̄,

‖P (1)(x)− P (x)‖ 6
eK1ν̄

1−K2eK1ν̄

e
1+|φ|
1−φ K1[|φ|ν̄+x0+σ2(1−γ)]+Amax

1−K0e
K2

1σ
2−2K1(φ−1)[x0+σ2(1−γ)]

2(φ−1)2

· ‖E‖ (8.19)

where E(x) = 1√
2πσ

{∫ −ν̄
−∞ e

− 1
2σ2 [ν−ψ(x)−K1σ2]2Q(ν) dν +

∫∞
ν̄ e−

1
2σ2 [ν−ψ(x)−K1σ2]2Q(ν) dν,

}
and Amax

is defined in Lemma 4.33

Proof:

1. Assumptions in Abel’s model:

(a) |φ| < 1

(b) K4 := K0e
K2

1σ
2−2K1(φ−1)[x0+σ2(1−γ)]

2(φ−1)2 < 1.

(c) 0 < K2 6 K0e
1
2
σ2(1−γ)2

.

2. The integral equation (3) in Abel’s model is given by:

P (x) =
1√
2πσ

K0e
K1x

1−K2eK1x

∫ ∞
−∞

e−
1

2σ2 [ν−σ2(1−γ)]2
[
1−K2e

K1(x0+φx+ν)
]

[1 +P (x0 +φx+ ν)] dν.

3. Change of variable in the integral, i.e., µ = x0 + φx+ ν:

P (x) =
1√
2πσ

K0e
K1x

1−K2eK1x

∫ ∞
−∞

e−
1

2σ2 [ν−φx−x0−σ2(1−γ)]2 (1−K2e
K1ν
)

[1 + P (ν)] dν

=
1√
2πσ

K0e
K1x

1−K2eK1x

∫ ∞
−∞

e−
1

2σ2 [ν−ψ(x)]2 (1−K2e
K1ν
)

[1 + P (ν)] dν

=
K0e

K1x

1−K2eK1x
M(x) +

1√
2πσ

K0e
K1x

1−K2eK1x

∫ ∞
−∞

e−
1

2σ2 [ν−ψ(x)]2 (1−K2e
K1ν
)
P (ν) dν ,

33For any f ∈ C([−ν̄, ν̄]), we define ‖f‖ := max−ν̄≤x≤ν̄ |f(x)|.
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where ψ(x) = φx+ x0 + σ2(1− γ) and

M(x) =
1√
2πσ

∫ ∞
−∞

e−
1

2σ2 [ν−ψ(x)]2(1−K2e
K1ν) dν

= 1− K2√
2πσ

∫ ∞
−∞

e−
1

2σ2 [ν−ψ(x)]2+K1ν dν

= 1− K2√
2πσ

∫ ∞
−∞

e−
1

2σ2 [ν−ψ(x)−K1σ2]2+K1ψ(x)+ 1
2
K2

1σ
2

dν

= 1−K2e
K1ψ(x)+ 1

2
K2

1σ
2
.

4. Choose a ν̄ > 0 such that max{K2e
K1ν̄ ,K2e

K1[|φ|ν̄+x0+σ2(1−γ)]+ 1
2
K2

1σ
2 } < 1. If P (x) denotes

the solution of Equation (3), then M(x) > 0 and P (x) > 0 for −ν̄ 6 x 6 ν̄.

5. Rather than directly compare the solutions to the integral equations (10) with (3) we consider

a third intergral equation: For −ν̄ 6 x 6 ν̄,

P (2)(x) =
K0e

K1x

1−K2eK1x
M(x) +

1√
2πσ

K0e
K1x

1−K2eK1x

∫ ν̄

−ν̄
e−

1
2σ2 [ν−ψ(x)]2 (1−K2e

K1ν
)
P (2)(ν) dν .

At the end of completion of this proof we then establish the result for P (1).

6. Let Q(x) := 1−K2eK1x

eK1x
P (x).

7. The equation in step (3) is equivalent to:

Q(x) = K0M(x) +
K0√
2πσ

∫ ∞
−∞

e−
1

2σ2 [ν−ψ(x)]2+K1νQ(ν) dν

= K0M(x) +
K0e

K1ψ(x)+ 1
2
K2

1σ
2

√
2πσ

∫ ∞
−∞

e−
1

2σ2 [ν−ψ(x)−K1σ2]2Q(ν) dν .

8. Equation in step (5) is equivalent to:

Q(2)(x) = K0M(x) +
K0e

K1ψ(x)+ 1
2
K2

1σ
2

√
2πσ

∫ ν̄

−ν̄
e−

1
2σ2 [ν−ψ(x)−K1σ2]2Q(2)(ν) dν .

9. Let Q0(x) = K2 for all x ∈ R and

Qn+1(x) = K0M(x) +
K0e

K1ψ(x)+ 1
2
K2

1σ
2

√
2πσ

∫ ∞
−∞

e−
1

2σ2 [ν−ψ(x)−K1σ2]2Qn(ν) dν for n ∈ Z+ .
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10. Let Q(2)
0 (x) = K2 for all −ν̄ 6 x 6 ν̄ and

Q
(2)
n+1(x) = K0M(x) +

K0e
K1ψ(x)+ 1

2
K2

1σ
2

√
2πσ

∫ ν̄

−ν̄
e−

1
2σ2 [ν−ψ(x)−K1σ2]2Q(2)

n (ν) dν for n ∈ Z+ .

11. The sequence {Qn(x)−Q(2)
n (x) }∞n=0 satisfies the equation:

Qn+1(x)−Q(2)
n+1(x) =

K0e
K1ψ(x)+ 1

2
K2

1σ
2

√
2πσ

∫ ν̄

−ν̄
e−

1
2σ2 [ν−ψ(x)−K1σ2]2 [Qn(ν)−Q(2)

n (ν)] dν

+
K0e

K1ψ(x)+ 1
2
K2

1σ
2

√
2πσ

∫ −ν̄
−∞

e−
1

2σ2 [ν−ψ(x)−K1σ2]2Qn(ν) dν

+
K0e

K1ψ(x)+ 1
2
K2

1σ
2

√
2πσ

∫ ∞
ν̄

e−
1

2σ2 [ν−ψ(x)−K1σ2]2Qn(ν) dν

for n ∈ Z+ .

12. (a) Under the assumption (c) in part 1, 0 6 Qn(x) 6 Qn+1(x) for n ∈ Z+ .

(b) Under the assumption in part 4, 0 6 Q
(2)
n (x) 6 Q

(2)
n+1(x) for −ν̄ 6 x 6 ν̄ and n ∈ Z+ .

(c) For −ν̄ 6 x 6 ν̄ and n ∈ Z+, we have Qn(x)−Q(2)
n (x) > 0 .

(d) By the argument in sections (4) and (5) of CCH the sequence {Qn(x) }∞n=0 absolutely

converges to the solution of the equation in part 5, say Q(x) .

(e) For −ν̄ 6 x 6 ν̄ and n ∈ Z+, we have 0 6 Q
(2)
n (x) 6 Qn(x) 6 Q(x) .

(f) The sequence {Q(2)
n (x) }∞n=0 absolutely and uniformly converges to a continuous solution

of Equation 5, say Q(2)(x), for −ν̄ 6 x 6 ν̄ (see part 15: the proof of uniqueness) for a

similar argument.

13. Recall from Lemma 1 that if fa(x) = eaK1ψ(x) for some a ∈ R, then

1√
2πσ

∫ ∞
−∞

e−
1

2σ2 [ν−ψ(x)−σ2K1]2fa(ν) dν = C(a)eaφK1ψ(x) ,

where from the proofs of Lemma 2 and 4 C(a) = e
1
2
a2φ2σ2K2

1+aK1[K1σ2φ+σ2(1−γ)+x0]. For each

n ∈ Z+, we have
n−1∏
i=0

C

(
φi − 1
φ− 1

)
= eAn+nB ,
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An =
K2

1σ
2φ2

2(φ− 1)2(φ2 − 1)
(φ2n − 1) +

K1(φ− 1)[x0 + σ2(1− γ)]−K2
1σ

2φ

(φ− 1)3
(φn − 1) ,

B =
−K2

1σ
2φ2 + 2K2

1σ
2φ− 2K1(φ− 1)[x0 + σ2(1− γ)]

2(φ− 1)2
.

e
φk−1
φ−1

K1ψ(x)+ k
2
σ2K2

1

k−1∏
i=0

C

(
φi − 1
φ− 1

)
= e

φk−1
φ−1

K1ψ(x)+Ak+ k
2

(σ2K2
1+2B)

,

σ2K2
1 + 2B =

K2
1σ

2 − 2K1(φ− 1)[x0 + σ2(1− γ)]
(φ− 1)2

,

Ak 6 Amax =
K2

1σ
2φ2

2(1− φ)2(1− φ2)
+
K1(1− φ)|x0 + σ2(1− γ)|+K2

1σ
2|φ|

(1− φ)3
(1 + |φ|) .

14. Let C([−ν̄, ν̄]) denote the set of all real-valued continuous functions on the closed interval

[−ν̄, ν̄]. For any f ∈ C([−ν̄, ν̄]), we define ‖f‖ := max−ν̄≤x≤ν̄ |f(x)|.

15. Equation in step 8 has a unique solution in the space C([−ν̄, ν̄]) .

Proof. Let Q(2)(x) and Q̄(2)(x) be solutions of the Equation in step 8 in C([−ν̄, ν̄]). For

−ν̄ 6 x 6 ν̄,

Q(2)(x)− Q̄(2)(x) =
K0e

K1ψ(x)+ 1
2
K2

1σ
2

√
2πσ

∫ ν̄

−ν̄
e−

1
2σ2 [ν−ψ(x)−K1σ2]2 [Q(2)(ν)− Q̄(2)(ν)] dν.

Claim: for all n = 0, 1, 2, . . . , we have

|Q(2)(x)− Q̄(2)(x)| 6 ‖Q(2) − Q̄(2)‖Kn
0 e

n
2
K2

1σ
2
e
φn−1
φ−1

K1ψ(x)
n−1∏
i=0

C

(
φi − 1
φ− 1

)
. (†)

1) If n = 0, then we have |Q(2)(x)− Q̄(2)(x)| 6 ‖Q(2) − Q̄(2)‖ for −ν̄ 6 x 6 ν̄.
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2) Suppose that (†) is true for n > 0. By the induction hypothesis, we get

|Q(2)(x)− Q̄(2)(x)| 6 K0e
K1ψ(x)+ 1

2
K2

1σ
2

√
2πσ

∫ ν̄

−ν̄
e−

1
2σ2 [ν−ψ(x)−K1σ2]2 |Q(2)(ν)− Q̄(2)(ν)| dν

6 ‖Q(2) − Q̄(2)‖Kn+1
0 e

n+1
2
K2

1σ
2
n−1∏
i=0

C

(
φi − 1
φ− 1

)
· e

K1ψ(x)

√
2πσ

∫ ∞
−∞

e−
1

2σ2 [ν−ψ(x)−K1σ2]2fφn−1
φ−1

(ν) dν

6 ‖Q(2) − Q̄(2)‖Kn+1
0 e

n+1
2
K2

1σ
2
eK1ψ(x)e

φφ
n−1
φ−1

K1ψ(x)
n∏
i=0

C

(
φi − 1
φ− 1

)

6 ‖Q(2) − Q̄(2)‖Kn+1
0 e

n+1
2
K2

1σ
2
e
φn+1−1
φ−1

K1ψ(x)
n∏
i=0

C

(
φi − 1
φ− 1

)
.

By induction, (†) is true for all n ∈ Z+ .

|Q(2)(x)− Q̄(2)(x)| 6 ‖Q(2) − Q̄(2)‖Kn
0 e

φn−1
φ−1

K1ψ(x)+An+n
2

(σ2K2
1+2B)

6 ‖Q(2) − Q̄(2)‖e
φn−1
φ−1

K1ψ(x)+Amax

(
K0e

K2
1σ

2−2K1(φ−1)[x0+σ2(1−γ)]

2(φ−1)2

)n
.

|Q(2)(x)− Q̄(2)(x)| 6 lim
n→∞

‖Q(2) − Q̄(2)‖e
φn−1
φ−1

K1ψ(x)+Amax

(
K0e

K2
1σ

2−2K1(φ−1)[x0+σ2(1−γ)]

2(φ−1)2

)n
= ‖Q(2) − Q̄(2)‖e−

1
φ−1

K1ψ(x)+Amax · 0 = 0.

Therefore, Q(2)(x) = Q̄(2)(x) for −ν̄ 6 x 6 ν̄ .

16. Estimate Q(x)−Q(2)(x) for −ν̄ 6 x 6 ν̄:

Q(x)−Q(2)(x) = K0e
K1ψ(x)+ 1

2
K2

1σ
2

{
1√
2πσ

∫ ν̄

−ν̄
e−

1
2σ2 [ν−ψ(x)−K1σ2]2 [Q(ν)−Q(2)(ν)] dν + E(x)

}
,

where

E(x) =
1√
2πσ

{∫ −ν̄
−∞

e−
1

2σ2 [ν−ψ(x)−K1σ2]2Q(ν) dν +
∫ ∞
ν̄

e−
1

2σ2 [ν−ψ(x)−K1σ2]2Q(ν) dν
}
.

17. Since Qn(x) 6 Q(x) for n ∈ Z+ , we get

1√
2πσ

{∫ −ν̄
−∞

e−
1

2σ2 [ν−ψ(x)−K1σ2]2Qn(ν) dν +
∫ ∞
ν̄

e−
1

2σ2 [ν−ψ(x)−K1σ2]2Qn(ν) dν
}

6 E(x) 6 ‖E‖

for −ν̄ 6 ν 6 ν̄.

34



18. Let x be such that −ν̄ 6 x 6 ν̄. Then

Qn+1(x)−Q(2)
n+1(x) 6 ‖E‖

n∑
k=0

Kk
0 e

k
2
K2

1σ
2
e
φk−1
φ−1

K1ψ(x)
k−1∏
i=0

C

(
φi − 1
φ− 1

)
for n ∈ Z+ . (‡)

Proof. 1) If n = 0, then Q(ν) = Q(2)(ν) = K2 for −ν̄ 6 ν 6 ν̄ and

Q1(x)−Q(2)
1 (x) =

K0e
K1ψ(x)+ 1

2
K2

1σ
2

√
2πσ

∫ ν̄

−ν̄
e−

1
2σ2 [ν−ψ(x)−K1σ2]2 [Q0(ν)−Q(2)

0 (ν)] dν

+
K0e

K1ψ(x)+ 1
2
K2

1σ
2

√
2πσ

∫ −ν̄
−∞

e−
1

2σ2 [ν−ψ(x)−K1σ2]2Q0(ν) dν

+
K0e

K1ψ(x)+ 1
2
K2

1σ
2

√
2πσ

∫ ∞
ν̄

e−
1

2σ2 [ν−ψ(x)−K1σ2]2Q0(ν) dν 6 E(x) 6 ‖E‖ .

Since ‖E‖
∑0

k=0K
k
0 e

k
2
K2

1σ
2
e
φk−1
φ−1

K1ψ(x)∏k−1
i=0 C

(
φi−1
φ−1

)
= ‖E‖ , (‡) is true.

2) Suppose that (‡) is true for n > 0. By the induction hypothesis, we get

Qn+2(x)−Q(2)
n+2(x)

=
K0e

K1ψ(x)+ 1
2
K2

1σ
2

√
2πσ

∫ ν̄

−ν̄
e−

1
2σ2 [ν−ψ(x)−K1σ2]2 [Qn+1(ν)−Q(2)

n+1(ν)] dν

+
K0e

K1ψ(x)+ 1
2
K2

1σ
2

√
2πσ

∫ −ν̄
−∞

e−
1

2σ2 [ν−ψ(x)−K1σ2]2Qn+1(ν) dν

+
K0e

K1ψ(x)+ 1
2
K2

1σ
2

√
2πσ

∫ ∞
ν̄

e−
1

2σ2 [ν−ψ(x)−K1σ2]2Qn+1(ν) dν

6
K0e

K1ψ(x)+ 1
2
K2

1σ
2

√
2πσ

∫ ∞
−∞

e−
1

2σ2 [ν−ψ(x)−K1σ2]2 [Qn+1(ν)−Q(2)
n+1(ν)] dν + E(x)

6 ‖E‖
n∑
k=0

Kk+1
0 e

k+1
2
K2

1σ
2
eK1ψ(x)e

φφ
k−1
φ−1

K1ψ(x)
C

(
φk − 1
φ− 1

) k−1∏
i=0

C

(
φi − 1
φ− 1

)
+ ‖E‖

6 ‖E‖
n∑
k=0

Kk+1
0 e

k+1
2
K2

1σ
2
e
φk+1−1
φ−1

K1ψ(x)
k∏
i=0

C

(
φi − 1
φ− 1

)
+ ‖E‖

= ‖E‖
n+1∑
k=0

Kk
0 e

k
2
K2

1σ
2
e
φk−1
φ−1

K1ψ(x)
k−1∏
i=0

C

(
φi − 1
φ− 1

)
.

By induction, (‡) is true for all n ∈ Z+ .

19. Estimate ‖Q−Q(2)‖:

Qn+1(x)−Q(2)
n+1(x) 6 ‖E‖e

1+|φ|
1−φ K1ψ(x)+Amax

n∑
k=0

(
K0e

K2
1σ

2−2K1(φ−1)[x0+σ2(1−γ)]

2(φ−1)2

)k
for −ν̄ 6 x 6 ν̄ ,
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Q(x)−Q(2)(x) 6 ‖E‖e
1+|φ|
1−φ K1ψ(x)+Amax

∞∑
k=0

(
K0e

K2
1σ

2−2K1(φ−1)[x0+σ2(1−γ)]

2(φ−1)2

)k
,

‖Q−Q(2)‖ 6
e

1+|φ|
1−φ K1[|φ|ν̄+x0+σ2(1−γ)]+Amax

1−K0e
K2

1σ
2−2K1(φ−1)[x0+σ2(1−γ)]

2(φ−1)2

· ‖E‖ .

20. Estimate ‖P − P (2)‖: P (x)− P (2)(x) = eK1x

1−K2eK1x
[Q(x)−Q(2)(x)] for −ν̄ 6 x 6 ν̄.

‖P − P (2)‖ 6
eK1ν̄

1−K2eK1ν̄
‖Q−Q(2)‖.

Remark. We can show that the integral equation

P (1)(x) =
K0e

K1x

1−K2eK1x
M(x) +

1√
2πσ

K0e
K1x

1−K2eK1x

∫ ν̄

−∞
e−

1
2σ2 [ν−ψ(x)]2 (1−K2e

K1ν
)
P (1)(ν) dν

has a unique solution in the space C((−∞, ν̄]) and P (2)(x) 6 P (1)(x) 6 P (x) for −ν̄ 6 x 6 ν̄.

Proposition 3 follows by combining steps (19) and (20) with this result.
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Figure 1 displays the condition for convergence of the price-dividend function for the Mehra

and Prescott case; the price-dividend function exists as long as, K4 < 1. The individual investor’s

discount rate, β = beta, is on the x-axis; his (her) coefficient of risk aversion, γ = gam is on the

y-axis; and K4 = K0e
K2

1σ
2−2K1(φ−1)[x0+σ2(1−γ)]

2(φ−1)2 is on the z-axis.
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Figure 1

Figure 2 displays three price-dividend functions for the hybrid asset pricing model. The horizontal

axis is the current dividend growth rate, x, while the vertical axis is the price-dividend function, P (x)

based on Equation (6.15). The flat curve is Mehra-Prescott case, the steepest curve is hybrid habit

model with 50% internal habit, and the middle curve is the external habit model. The parameter

values used are β = 0.9765, σ = 0.036, γ = 3.25, x∗ = 0.017, and φ = −0.14.
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Table 1. Comparison of Results across Cases of the Abel Model
Statistic Internal 50% Daily Monthly Annual

α = 1 and ρ = 0.5 1962-2003 1946-2003 1871-2002
E(R) 0.070 0.055 0.0711 0.070
σ(R) 0.229 0.151 0.149 0.171
Skewness R 27.280 -19.718 -2.019 -0.584
Kurtosis R 136.553 7835.80 23.920 0.601
E(RB) 0.028 0.016 .011 0.028
σ(RB) 0.245 0.002 0.016 0.060
E(R−RB) 0.042 0.039 0.060 0.042
σ(R−RB) 0.229 0.151 0.147 0.174
Skewness R−RB 27.280 -19.743 -2.112 -0.544
Kurtosis R−RB 136.553 7860.99 27.167 1.120
P (.017) 41.82 22.91

Notes : R is the real return on stocks and RB is the real return on bonds. Ct is real per capita consumption
at time t, and P is the price-dividend ratio. E is the expectation operator and σ is a standard deviation.
P (0.017) is the value of the price dividend ratio at the historic average consumption growth rate, 0.017.
The statistics for the exact solution are evaluated at the historic average consumption growth rate. The
parameter values used are β = 0.9765, σ = 0.036, γ = 3.25, x∗ = 0.017, and φ = −0.14. We calculate
the moments for the distribution of stock (bond) returns by starting with the price-dividend ratio, P , and
the price of bonds, converting them to returns, and then integrating to obtain expected returns, standard
deviation, skewness and kurtosis. All stock return data refer to the S&P 500 index. The returns are
converted to real values by subtracting inflation as measured by the monthly CPI. The daily stock return
data are annualized; they are based on CRSP data. The bond return is the 90 day T-Bill rate from FRED
II at http://research.stlouisfed.org/. We lost 123 observations for the daily data, because T-Bill rates were
missing on these days. The monthly stock return and 90 day T-Bill rate are from CRSP. The annual data
from 1871 to 2002 is from Shiller (1989). The updated data was obtained from http://www.econ.yale.edu/∼
shiller/data.htm.

Table 2. Moments of Monthly Nominal Stock Returns
Statistic 1802− 2003 1802− 1925 1926− 2003 1946− 2003
E(R) 0.0883 0.0721 0.1162 0.1186
σ(R) 0.156 0.133 0.186 0.142
Skewness R 0.43 -0.65 0.78 -1.31
Kurtosis R 96.95 46.14 97.71 21.13

Notes : R is the nominal return on stocks. E is the expectation operator and σ is the standard deviation.
The sample moments are for Schwert’s (1989, 1990) monthly stock return series, found at his website
http://schwert.ssb.rocheser.edu/mstock.htm. The data after 1925 is updated following the instructions on
Schwert’s website, using the CRSP valued weighted market index.
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